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The numerical study of J. Song & M. L. Banner (J. Phys. Oceanogr. vol. 32, 2002,
p. 254) proposed a generic threshold parameter for predicting the onset of breaking
within two-dimensional groups of deep-water gravity waves. Their parameter provides
a non-dimensional measure of the wave energy convergence rate and geometrical
steepening at the maximum of an evolving nonlinear wave group. They also suggested
that this parameter might control the strength of breaking events. The present paper
presents the results of a detailed laboratory observational study aimed at validating
their proposals.

For the breaking onset phase of this study, wave potential energy was measured at
successive local envelope maxima of nonlinear deep-water wave groups propagating
along a laboratory wave tank. These local maxima correspond alternately to wave
group geometries with the group maximum occurring at an extreme carrier wave
crest elevation, followed by an extreme carrier wave trough depression. As the
nonlinearity increases, these crest and trough maxima can have markedly different
local energy densities owing to the strong crest–trough asymmetry. The local total
energy density was reconstituted from the potential energy measurements, and made
dimensionless using the square of the local (carrier wave) wavenumber. A mean
non-dimensional growth rate reflecting the rate of focusing of wave energy at the
envelope maximum was obtained by smoothing the local fluctuations.

For the cases of idealized nonlinear wave groups investigated, the observations
confirmed the evolutionary trends of the modelling results of Song & Banner (2002)
with regard to predicting breaking onset. The measurements confirmed the proposed
common breaking threshold growth rate of 0.0014 ± 0.0001, as well as the predicted
key evolution times: the time taken to reach the energy maximum for recurrence
cases; and the time to reach the breaking threshold and then breaking onset, for
breaking cases.

After the initiation and subsequent cessation of breaking, the measured wave packet
mean energy losses and loss rates associated with breaking produced an unexpected
finding: the post-breaking mean wave energy did not decrease to the mean energy level
corresponding to maximum recurrence, but remained significantly higher. Therefore,
pre-breaking absolute wave energy or mean steepness do not appear to be the most
fundamental determinants of post-breaking wave packet energy density.

However, the dependence of the fractional breaking energy loss of wave packets on
the parametric growth rate just before breaking onset proposed by Song & Banner
(2002) was found to provide a plausible collapse to our laboratory data sets, within
the experimental uncertainties. Further, when the results for the energy loss rate per
unit width of breaking front were expressed in terms of a breaker strength parameter
b multiplying the fifth power of the wave speed, it is found that b was also strongly
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correlated with the parametric growth rate just before breaking. Measured values of
b obtained in this investigation ranged systematically from 8 × 10−5 to 1.2 × 10−3.
These are comparable with open ocean estimates reported in recent field studies.

1. Introduction
Breaking of dominant ocean wind waves in the form of large whitecaps is a familiar

occurrence associated with strong wind forcing conditions at sea. Through their
overturning of the air–sea interface, such breaking events (as well as those of shorter
breaking waves) profoundly influence the dynamics and thermodynamics of the upper
ocean and marine atmospheric boundary layer, while their impact forcing provides the
greatest safety challenge to offshore shipping and coastal structures. Consequences
of breaking in the upper ocean surface layer include greatly enhanced turbulence
dissipation rates in the near-surface region (e.g. Terray et al. 1996; Gemmrich &
Farmer 2004). In the atmospheric marine boundary layer, increased waveform drag
can result from the separated air flow over breaking waves, together with augmented
sea spray, bubbles and acoustic underwater noise, as well as enhanced microwave
backscatter and emissivity. These numerous and diverse aspects of wave breaking are
described in greater detail in, for example, Banner & Peregrine (1993); Thorpe (1993)
and Melville (1996).

Despite the widespread occurrence of breaking waves at sea, an understanding of
the mechanisms that determine the onset and strength of breaking events has been
elusive ever since water waves have been studied scientifically. Identifying a robust
threshold variable that determines the onset of breaking for deep-water waves has
remained a problem for many decades. Various breaking threshold criteria have been
proposed based on local wave geometrical or kinematical properties such as wave
steepness, crest fluid velocities and acceleration, and Stansell & MacFarlane (2002)
provides a critical appraisal of this kinematic approach. However, breaking criteria
based on such local properties do not appear to be universally applicable, as evidenced
in a number of laboratory and field observations. For example, the comprehensive
field study of Holthuijsen & Herbers (1986) highlights the inability to distinguish
breaking events on the basis of local wave steepness. In any event, it may be argued
that such breaking criteria do not provide much insight into the underlying dynamics
that determines the onset and strength of wave breaking, a shortcoming shared by
statistically based, broader spectral variants of these criteria (e.g. Papadimitrakis et al.
1988).

Of potential significance to the dynamics underlying wave breaking have been
field observations associating wave breaking with wave group structure, particularly
those of Donelan, Longuet-Higgins & Turner (1972) and subsequently Holthuijsen &
Herbers (1986). Furthermore, wave group structure is a conspicuous feature of ocean
wave height records and a significant amount of literature exists on this topic.
In the present context, the statistics of wave groups (e.g. Longuet-Higgins 1984)
and the occurrence of extreme waves in wave groups (e.g. Phillips, Gu & Donelan
1993; Osborne, Onorato & Serio 2000) are of particular relevance. Complementary
laboratory observational studies have investigated the unforced (zero wind) evolution
of two-dimensional nonlinear wave groups (e.g. Melville 1982, 1983; Rapp & Melville
1990; Kway, Loh & Chan 1998; Tulin & Waseda 1999). These papers, however, do
not address the underlying dynamical underpinnings of wave breaking onset. There
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has also been strong interest in studying nonlinear modulational processes through
model equations, such as the nonlinear Schrödinger equation and its higher-order
variants (e.g. Dysthe 1979; Dias & Kharif 1999). While well-suited to examining
many aspects of wave group behaviour, such model equations cannot describe the
onset of wave breaking, which requires the exact (Euler) equation formulation with
fully nonlinear free-surface boundary conditions.

Complementary to these theoretical developments, recent numerical studies have
been made of the evolution of unforced two-dimensional nonlinear wavetrains beyond
the linear perturbation instability stage. These calculations reveal a complex evolution
to recurrence or breaking that highlights the fundamental role played by nonlinear
intra-wave group dynamics (e.g. Dold & Peregrine 1986; Tulin & Li 1992; Banner &
Tian 1998).

The present laboratory investigation seeks to advance present understanding of two
fundamental aspects of group-related deep-water wave breaking behaviour: breaking
initiation, and subsequent loss of energy from the wave field.

1.1. Onset of wave breaking

Song & Banner (2002 hereinafter referred to as SB) used a wave-group-following
(WGF) approach to investigate numerically the evolution of unforced two-dimen-
sional nonlinear wave groups with different initial wave group structure. SB sought
to identify the difference between evolution to recurrence and to breaking onset, in
terms of the rate of mean wave energy convergence and geometrical steepening at
the maximum of wave groups, when travelling with these wave group maxima. After
calculating the long-term evolution of the maximum of the local energy density of
wave groups, with suitable post-processing they tracked the envelope maximum of the
wave group energy and calculated an associated non-dimensional parametric mean
growth rate δ, defined by

δ(t) =
1

ωc

D〈µ〉
Dt

, (1)

where D/Dt is the rate of change following the wave group whose initial mean carrier
wave frequency is ωc, µ =Ek2 is a non-dimensional variable reflecting the local wave
energy and wavenumber behaviour. Here, E is the depth-integrated local total energy
density (after division by ρwg) and k is the local wavenumber. The local mean value
of µ averaged over several carrier wave periods is denoted by 〈µ(t)〉. Following SB,
ωc was taken as the mean frequency of the two spectral modes in case II wave groups
and as the mean paddle frequency (ωp) for the case III wave groups. Definitions
of these wave group geometries are given in § 2.2. The mean carrier wave period
T =2π/ωc.

The growth rate δ reflects a mean energy convergence rate towards, or away from,
the wave group energy maximum, associated with nonlinear interactions of wave
energy from other parts of the wave group, as measured by an observer travelling
with the wave group. It also reflects the steepening of the maximal carrier waveform
associated with the increased local carrier wavenumber. However, as discussed in
detail in § 4b of SB, the energy maximum of a wave group oscillates as it grows
during the evolution, owing to the crest–trough asymmetry associated with Stokes
waves, and these fast oscillations must be filtered out to obtain the associated mean
parametric growth rate δ. For the ensemble of different structures and sizes of wave
groups they investigated, SB found that this dynamically based mean growth rate
had a common threshold of [1.4 ± 0.1] × 10−3 that distinguished evolution of the
group to recurrence without breaking, from evolution in which initiation of breaking
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occurs. In a companion paper, Banner & Song (2002) extended that unforced study
to strongly wind-driven cases, reporting that the hydrodynamics of nonlinear wave
groups continued to dominate the breaking onset process even for relatively strong
wind forcing. Compared to previously proposed breaking thresholds, this dynamically
based approach contributes a more complete physical perspective, both long-term and
short-term, of the evolution to breaking and provides an earlier and more decisive
indicator for the onset of breaking.

The present paper describes the results of our detailed laboratory study to validate
the proposed SB breaking threshold growth rate and their suggested dependence of
breaking energy loss on this growth rate just before breaking onset. To this end,
detailed measurements were made of the evolution of the wave potential energy
density and relevant carrier wave properties in a laboratory wave flume for two
representative paddle-generated initial wave group geometries. The experiments were
designed to reproduce conditions representing a subset of those in the calculations of
SB. From this data, the behaviour of the SB parametric growth rate parameter δ was
calculated using exactly the same methodology as in SB for direct comparison with
their model results for breaking onset.

1.2. Strength of wave breaking

SB also proposed that the growth rate δbr just prior to breaking onset might provide
a dynamically based measure of the strength of breaking events, but the latter was
not available from their computations, which terminated just after the actual onset
of breaking. The consequences of wave breaking remain major challenges in air–sea
interaction modelling. We sought to extend present knowledge of breaking energy
losses and loss rates beyond their dependence on the initial mean wave packet
steepness, as explored by, for example, Dold & Peregrine (1986), Thorpe (1993) and
Melville (1994). To this end, we undertook a systematic study of how the post-
breaking mean wave packet energy was correlated with the pre-breaking growth rate
δbr explored by SB.

For the post-breaking phase, we also examined the breaking energy loss rate
relationship proposed by Duncan (1981, 1983). Based on dimensional considerations,
Duncan proposed that the energy loss rate per unit width of breaking front εL could
be expressed in terms of a breaker strength coefficient b multiplying the fifth power
of the breaking wave speed cbr :

εL = bbrρwc5
br

/
g, (2)

where ρw is the water density. In (2), the unknown non-dimensional coefficient bbr

reflects the breaking ‘strength’ or ‘intensity’. Subsequent investigations have sought to
quantify bbr and its parametric dependence (e.g. Phillips 1985; Melville 1994; Peirson &
Banner 2000; Phillips, Pasner & Hansen 2001; Melville & Matusov 2002; Gemmrich
2005). Present estimates for the breaking strength coefficient bbr from laboratory
and field measurements range over two orders of magnitude. From measurements of
energy dissipated and breaker durations in the laboratory study of Loewen & Melville
(1991), Melville (1994) reported a parametric dependence for bbr on the maximum
packet wave slope parameter S, where S =(Σan)kc is the maximal steepness of the
discrete Fourier wave amplitudes an in the wave packet, and kc is the mean packet
wavenumber.

In the present study, we sought to refine the quantification of the breaking strength
coefficient bbr , particularly its correlation with S and with the more intrinsic breaking
parameter δbr . In the following sections, we describe the experimental facilities and
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Figure 1. Geometrical details of the 30 m wave flume used in the present study. The width of
the tank was 0.6m. The traversing wave probe assembly showing the relative probe positions
is shown schematically, with further details given in the text.

techniques used during this investigation, discuss the results obtained, summarize our
conclusions and recommendations for future work.

2. Measurement details
As highlighted above, SB used a wave-group-following approach to investigate

numerically the evolution of unforced two-dimensional nonlinear wave groups with
different initial wave group structure, and the same approach was implemented in
the present measurements. This study sought to reproduce conditions typical of those
in SB and then determine the location of successive crest and trough wave group
maxima as the wave groups evolved along the tank. This was a laborious task, as
it had to be done for each of the initial carrier wave steepness cases investigated.
Once these maxima were located and the relevant wave measurements recorded,
data analysis was undertaken to validate experimentally: (i) the generic breaking
threshold behaviour determined by SB; (ii) whether the growth rate δbr just prior to
breaking onset correlated with observed energy losses and/or loss rates associated
with breaking.

2.1. Wave tank

The experiments were carried out in a wave flume (30 m long, 0.6 m wide and
0.6 m high) with glass sidewalls, located at the University of New South Wales Water
Research Laboratory, Manly Vale. A programmable servo-controlled actuator drove a
flexible plate wave paddle cantilevered from near the tank floor, generating the desired
initial wave group structures with excellent repeatability and long-term stability
(figure 1). We checked carefully that the wave packets generated were closely two-
dimensional and that there were minimal reflections from the downstream absorbing
beach. This involved ensuring that the choice of primary carrier wave frequency did
not lead to the generation of cross-tank waves at the paddle, and also fine-tuning the
beach geometry to minimize spurious reflections. We believe that the observed low
background level of low-frequency wave energy that could not be entirely suppressed
was due to the bound long waves associated with wave groups. This residual amounted
to a background amplitude oscillation of O(1–2 mm) and was regarded as acceptable
in relation to the typical carrier wave amplitudes of 20–50 mm used in this study.
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There was an associated residual lateral sloshing inhomogeneity of the same order,
with O(1–2 mm) amplitude.

2.2. Cases of initial wave groups investigated

We investigated cases based on two of the generic wave group structures reported
by SB. Because of finite tank length considerations, we chose the bimodal initial
spectrum (case II) and the chirped wave packet (case III), and initially investigated
cases comprising five carrier waves in the initial spatial wave group. The case II wave
groups generated had an initial spectrum of the form

η = a0 cos(k0x) + εa0 cos

(
N + 1

N
k0x − π

18

)
with ε = 1, (3)

where a0 is the amplitude and N = 5 is the number of waves in the group. The
small phase shift, retained from Banner & Tian (1998), is inconsequential. Because
of the well-known dispersive properties of deep-water gravity waves, the temporal
signal has 10 waves/group to generate this five-wave spatial group structure. With
an appropriate mean carrier wave frequency of 1.7 Hz, we were able to match closely
the computed wave group evolution within the constraints of our wave tank. We
subsequently carried out measurements using a bimodal spectrum with N = 3 in
order to extend our measurement parameter space.

The case III wave groups had a more rapidly deforming geometry characteristic of
chirped wave packets where the carrier waves in the packet coalesce rapidly owing to
their different phase velocities. These wave packets were produced here, as with the
chirped packets in SB, by driving the wavemaker with the motion

xp = −0.25Ap

(
tanh

4ωpt

Nπ
+ 1

)(
1 − tanh

4(ωpt − 2Nπ)

Nπ

)
sin[ωp(t − 0.018t2/2)], (4)

where t is time and N sets the number of carrier waves in the packet, Ap is
proportional to the piston amplitude, ωp = (g/(2π/λ) tanh((2π/λ)h))1/2 is its angular
frequency, λ is the wavelength and h is the still-water depth. To simulate deep water,
SB took the still-water depth near the wave paddle as h = 4 m, with λ= 2 m. For the
case III measurements, we chose a paddle frequency ωp comparable with the case II
waves and used this in (3), as our tank was too short to accommodate the anticipated
evolution of a wavelength of λ= 2 m.

We note that the wave paddle mechanism installed in our facility was a bottom-
cantilevered flexible plate with tapered stiffness, designed to be optimal for producing
deep-water waves with minimal settling distance. This was ideal for simulating the
conditions of the case II (periodic domain) wave group evolution. However, it appears
to have created a mismatch for the case III wave groups, for which the SB model used
a horizontal piston flat-plate paddle motion. We believe that this did not allow us to
reproduce optimally the observational conditions for the case III wave groups with the
initial conditions of the SB model. The cantilevered flexible-plate generator provides
water particle orbital motions far closer to the exponentially decreasing with depth
distribution of deep-water waves than horizontal displacement flat-plate generators,
which are much better matched to the depth-independent horizontal motion of
shallow-water waves. This latter paddle type would therefore be expected to have
a longer relaxation distance for the waves to adjust to the deep-water conditions
in our tank. As it was not logistically feasible to change the paddle during our
experimental programme, we decided to use this case primarily to verify the breaking
onset and strength hypotheses of SB, and not for validating evolution details of
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the modelled case III wave packets. In our experiments, we used (4) with a shorter
wavelength of 0.92 m as input for the case III wave groups, which corresponds to
a paddle frequency ωp = 8.18 rad s−1. Under the circumstances, we felt that this was
an appropriate strategy as we were interested primarily in whether a typical evolving
chirped wave packet would conform to the generic breaking onset threshold growth
rate and energy loss criteria proposed by SB.

2.3. Wave probes

After an extensive effort to optimize the two-dimensionality and residual background
disturbances from reflections, we settled on an array of six capacitance wave wire
gauges with 200 mm elements, configured as two in-line sets of three probes with
an inter-probe streamwise spacing of 80–90 mm. This was the minimum separation
achievable with the probe electronics casings and represents about 0.1 of the carrier
wavelength. The two sets of three probes had a lateral spacing between them of
120 mm. They were mounted on a sliding trolley symmetrically about its centreline,
with a 240 mm distance to either tank sidewall. This traversing arrangement allowed
the probes to be positioned repeatably to within 5 mm at any location along the
tank. The probe resolution was better than 0.1 mm and their linearity was better than
±1 % of their 200 mm range. They had excellent long-term stability, as demonstrated
by approximately monthly static calibrations. This wave probe arrangement allowed
the efficient gathering of data for locating the fetches of the local crest and trough
maxima of the evolving wave group, and the local surface elevation at these maxima.
From this data, the local depth integrated potential energy and the corresponding
local wavenumber could be calculated as explained in § 2.5.

2.4. Frictional losses

As observed in Rapp & Melville (1990), frictional losses are likely to be significant in
this study owing to the tank sidewall separation of 0.6 m. This aspect is discussed in
§ 4.2 for breaking initiation, and in § 4.3 in connection with breaking losses and loss
rates.

We note that well after the conclusion of the main experiments, we were able to
repeat one of the runs (case II, N = 3) in a 20 m wide wave basin, equipped with a
programmable piston paddle. In this wide basin, the viscous losses associated with
the tank boundaries were negligible. This provided a valuable opportunity to examine
the impact of viscosity on the modulational evolution to breaking initiation, and on
the breaking loss and loss rates.

2.5. Methodology

We had intended to make particle image velocimetry (PIV) measurements of the
subsurface velocity field in order to obtain the depth-integrated kinetic energy density.
However, this did not prove to be a feasible option in our wave tank owing to the
residual cross-tank variability and difficulty in accurately extracting the dominant
wave velocity components very close to the instantaneous free surface. Instead,
following Rapp & Melville (1990), we limited our wave energy measurements to the
potential energy density, and inferred the kinetic energy densities from the observed
potential energy densities based on their relative magnitudes as determined in SB.
Therefore, the primary measurements required for the breaking onset phase of this
study were the set of wave elevations zmax and corresponding wavenumber kmax

determined at the local successive crest and trough maxima of the wave groups as
they evolved with distance from the wave paddle. The potential energy density at
these envelope maxima was gz2

max/2.
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Figure 2. Ratio of potential to total energy at local energy maxima during the evolution.
(a) crest maxima, (b) trough maxima. The results shown are for the ensemble of case II, N = 5
and case III, N = 5 results given in table 1 in SB, where the various symbols represent each of
the different initial steepness values. The abscissa is the normalized fetch (or equivalent time)
from the paddle to the location of breaking initiation.

The justification for this approach is based on the results of Skyner (1996), who
concluded that the internal velocities in similar plunging breakers determined from
the Dold–Peregrine code and measured by PIV in a laboratory wave tank agreed
within 2 %, even in the overturning spout. The same code was used to generate
the data in figure 2 for the ratio of potential to total energy beneath the envelope
maximum. Hence, we believe that the model calculations we used to recover the kinetic
energy contribution are likely to approximate within a few per cent, results based
on measured subsurface velocities. The ‘scatter’ in the computation for the different
cases investigated is seen in figure 2 to be relatively small, and the overall effect on
the ratio develops only a relatively modest perturbation as breaking onset approaches
and the kinetic energy growth outpaces the potential energy growth. However, from
the numerical results, this aspect of the breaking process underpins the common
breaking threshold for the range of cases investigated by SB. The other motivation
for including the kinetic energy is the complementary goal of parameterizing the
breaking strength in terms of the growth rate δbr just prior to breaking initiation.

3. Data acquisition and processing
3.1. Breaking onset

As discussed in § 1.1, the goal was to measure the non-dimensional mean growth
rate δ, defined by (1). As stated above, the total wave energy density was inferred
carefully from the measured potential energy density, based on rescaling it according
to the ratio calculated in the SB experiments. These details were kindly provided by J.
Song (personal communication). Figure 2 shows the results for the ratio of potential
energy density to total energy density from these computations, including the curves
representing the conversion formula for crest and trough maxima. For further details
on the crest and trough maxima, see the discussion in § 4 of SB.

The determination of the local wavenumber k was made by pairwise Hilbert
transform analysis of the signals from the left-hand side set of three wave probes,
and similarly from the right-hand side set of probes. The phase function ϕ for each
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Figure 3. (a) Measured evolution properties with fetch, transformed to t/T , for the maximum
recurrence case II, N = 5 wave groups. (i) Carrier wave height at crest maxima (upper curve)
and trough maxima (lower curve). (ii) Corresponding local wavenumber, smoothed as described
in the text. (iii) Corresponding evolution of µ(t) = Ek2 using the group velocity, with crest
maxima (upper curve) and trough maxima (lower curve). The central curve is the mean 〈µ(t)〉
of the upper and lower curves. (iv) Non-dimensional mean growth rate δ(t), the normalized
derivative of µ(t), representing the convergence rate of wave energy to the envelope maximum.
(b) the corresponding case computed in SB. (i) µ(t) and 〈µ(t)〉, (ii) The corresponding δ(t).

probe was computed and k determined from any pair of streamwise probes from the
relationship k = ∂ϕ/∂x, using the measured phase difference and separation between
the two probes. With the ‘satellite’ probes located approximately 80 mm upstream
and downstream of the central probes, reliable estimates of the local wavenumber
and the local variability could be obtained. The local wavenumber estimated in SB
involved low-pass filtering the k distribution along the wave group, with the goal of
matching the filtered k-value with the local zero-crossing analysis wavenumber. SB
discusses this briefly, but Banner & Tian (1998, § 2.3.4), describes this in greater detail.
In the present observational study, we followed the same approach, except that the
low-pass filtering was done in the time domain. The-low pass cutoff was set to provide
kmax values in the range 1 <kmax/klin < 1.3, as determined in Banner & Tian (1998)
and SB. Here, klin is the nominal mean wavenumber determined from ωc using the
linear deep-water gravity wave dispersion relation. Results for the variation of the
local wavenumber following the envelope maximum are shown for the case II, N =5
maximum recurrence wave group case in figure 3, and for the marginal breaking case
in figure 4. These figures also allow a detailed comparison to be made of the resulting
total wave energy density with the SB computational results.

These figures confirm that our observational procedure was robust. The detailed
results are discussed in § 4, which also presents and discusses the full set of results for
the various initial wave steepness cases investigated.

3.2. Post-breaking energy losses and loss rates

The mean total wave energy 〈E〉 averaged over a wave group has been chosen as
the basis for quantifying the mean breaking energy loss and associated loss rate. To
construct the mean total energy from the mean potential energy measured in this
study, we again drew on the results of numerical computations in SB. From those
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Figure 4. As in figure 3, but for case II, N = 5 marginal breaking wave groups. (a) The
observations in this study; (b) the corresponding case computed and presented in SB.

calculations, the ratio of mean kinetic energy to mean total energy was found to be
0.505 ± 0.005, i.e. very close to equi-partitioning (J. Song, personal communication).

Measurement of mean potential energy loss rates in this study had to take into
account the routine occurrence of successive (multiple) breaking events along the
fetch, rather than a single break. This phenomenon has been reported previously
both in the field (e.g. Donelan et al. 1973) and in the laboratory (e.g. Melville 1996).
What determines its occurrence is not yet resolved, but may be associated with the
chirp bandwidth, which controls the coalescence rate of the different modes in the
nonlinear wave packet (e.g. see Rapp & Melville 1990). Casual observation at sea
suggests that even under moderate wind forcing, successive breaking events associated
with an identifiable wave packet occur routinely, with single breaking events occurring
much less frequently.

In any event, we measured the change of mean potential energy density of the
wave packets with distance from the paddle, and extrapolated to obtain the mean
total energy density as described above. This provided estimates of the total mean
wave energy decay rate associated with the breaking events, together with that due
to viscous action within the surface and sidewall boundary-layers. We also routinely
measured the location of the start and finish of each of the successive breaking
events. We then subtracted the background decay rate due to viscous boundary-layer
damping (sidewalls, surface layer and bottom), determined from the data prior to
breaking onset, and determined the overall energy loss systematically as a function
of δbr and also of the initial maximum steepness S of the wave groups. For S, we
followed the definition proposed by Melville (1994), which is based on the product of
the mean wavenumber of the group and the sum of the specified Fourier amplitudes
of the water level signal. This quantifies the maximum potential steepness attainable
at the envelope maximum. In the present study, the measured S value for each run
was determined just before the first break, in order to exclude the viscous background
loss. A detailed discussion of this process is given in § 4.3. To quantify the mean
energy dissipation rate due to breaking, and the breaking strength coefficient b in
(1.1) from this data, we used the procedure described in Appendix A.
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initial maximum steepness levels S of case II, N = 5 wave groups (i) and their corresponding
growth rates δbr just before breaking inception (ii). The identifiers 1′–5′ indicate increasing
order of S (b) corresponding computed results as presented in figure 12 of SB, withidentifiers
1–5 indicating increasing order of S. Owing to the differential frictional attenuation between
the cases, the values of S in the experiments were measured just before breaking onset. The
lowest S value in (ii) corresponds to the maximum recurrence case, with its maximum growth
rate.

4. Results
4.1. Evolution properties

Figures 3(a)(i) and (ii) and 4(a)(i) and (ii) show the measured evolution behaviour
of the wave elevation and the local wavenumber at the successive group crest and
trough maxima. Figure 3 shows the maximum recurrence case and figure 4 shows
the marginal breaking case, obtained by increasing incrementally the initial mean
carrier wave steepness until breaking initiation was evident visually. Figures 3(a)(iii)
and 4(a)(iii) show the corresponding evolution of µ at these maxima and minima,
and also the calculated evolution of its average value, 〈µ〉, after smoothing out the
fluctuations due to the crest and trough maxima, calculated from the average of the
smoothed spline fits to the crest and trough maxima. This follows the methodology
described in detail in Appendix B of SB. Figures 3(a)(iv) and 4(a)(iv) show the
calculated non-dimensional growth rate δ, which reflects the mean convergence rate
of energy to (or from) the group maximum.

The major points of comparison are the non-dimensional energy µ values and
non-dimensional evolution times t/T (T is the mean carrier wave period), either
at the recurrence maximum, or at the breaking onset time Tbr . It can be seen that
the key values of the mean growth rate δ, either at the recurrence maximum or at
breaking onset, conform closely to the computed values. The recurrence cases have
maximum growth rates below the SB breaking threshold of (1.4 ± 0.1) × 10−3, whereas
the marginal breaking cases exceed this threshold close to breaking onset.

Figure 5(a) summarizes the ensemble of measured 〈µ〉 evolution curves as the
initial mean carrier wave steepness is increased for the case II, N = 5 wave groups
investigated. These are directly comparable with the upper panel in figure 12 of
SB, shown in figure 5(b). There is close correspondence between details of the
observed evolutional curves and model results. The non-dimensional time t/T to
reach maximum recurrence is 42 in the model compared with 37 in the observations,
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with a similar number of local crest and trough maxima. This close correspondence
was also found for the case II, N = 3 evolution results, with the non-dimensional time
t/T to maximum recurrence of 24.0 in the observations compared with 23.4 in the
model, again with a similar number of local crest and trough maxima.

On the other hand, the modelled and observed evolutions for the case III wave
groups were significantly different, especially in terms of non-dimensional evolution
time to maximum recurrence. As discussed in the last paragraph in § 2.2, we attri-
bute this to the mismatch of initial wave-generation conditions in the model and
experiment. This was confirmed some time after these experiments were concluded
when the flexible paddle had been replaced by a piston paddle to carry out a shallow-
water study. A quick test using the ensemble of case II, N = 3 wave groups showed
the marginal break point shifted from 8.7 m for the flexible paddle to 14.3 m for
the piston paddle. Thus, a detailed quantitative comparison of the calculated and
observed evolution details with respect to t/T behaviour was not pursued for the
case III groups.

4.2. Breaking initiation threshold

One of the major aims of this study was to investigate, for a range of wave group
geometries, the behaviour of the parametric energy convergence rate δ with increasing
values of the initial carrier wave steepness, commencing with the marginal recurrence
evolution case. These results are shown in figures 3(a)(iv) and 4(a)(iv). These results
show that the maximum value attained by δ(t) for recurrence remains below the
common breaking threshold value (1.4 ± 0.1) × 10−3 proposed by SB. Each of the
subsequent runs in which the initial mean carrier wave steepness (S) was increased
progressively, such as is illustrated in figure 5(a), experienced breaking onset once
that threshold level was exceeded, with a systematic decrease in both the time that
the breaking threshold was first exceeded and the breaking onset time. These generic
trends are evident for each of the wave group cases II and III investigated, and
mirror the behaviour of the model calculations in SB. Table 1 summarizes the salient
features of each of the cases investigated in this study.

From their modelling study, SB noted that the proposed convergence-based break-
ing criterion allows advance notice of breaking initiation. This was confirmed in the
present set of observations. For example, in the case shown in figure 4, the breaking
threshold is exceeded at t/T ∼ 28, whereas breaking initiation occurs at t/T ∼ 32.
The appropriate entries in table 1 show similar behaviour for each of the other cases
observed.

We made an assessment of the likely strength of viscosity effects on breaking
initiation. Following Tulin & Waseda (1999, § 3.2.3), the spatial amplitude decay rate
d(ln(a))/d(kx) for linear waves is dominated by the sidewall interaction and is given
by βD = (2ν/ω)/B , where a is the wave amplitude, x is the streamwise fetch, k and ω

are the wavenumber and frequency, ν is the kinematic viscosity of water and B is the
tank width. For ν ∼ 10−6 m2 s−1 and B = 0.6 m, βD ∼ 8 × 10−4 and the corresponding
energy decay rate is βE ∼ 1.6 × 10−3. This translates into a loss of mean wave energy
of about 20 %, or a reduction of about 2 mm in the wave amplitude (from 22 mm to
20 mm) over the recurrence interval 10 < t/T < 47 in the wave tank.

To assess its significance on the measurements of parametric growth rates δ, βE

must be transformed to have the same growth rate form as δ = (1/ωc)(D〈µ〉/Dt),
where µ = k2Eloc and Eloc is the depth-integrated potential plus kinetic energy. This
transformation is straightforward and results in βE being reduced by the factor µ/π.
Even for the largest value of µ ∼ 0.2, the transformed βE is 1.3 × 10−4, which is
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Case II, N = 5 〈XT 〉 〈Xb〉
cg = 0.545 S δbr or δmax 〈E0〉 (m2) �〈E〉 (m2) (m) (m) b

0143(rec) 1.19 × 10−1 0.99 × 10−3 – – – – –
0146(mb) 1.13 × 10−1 3.35 × 10−3 2.15 × 10−4 4.95 × 10−6 4.9 3.2 8.24 × 10−5

0155(wb) 1.26 × 10−1 3.47 × 10−3 2.48 × 10−4 1.56 × 10−5 4.9 3.56 2.60 × 10−4

0175(ib) 1.34 × 10−1 5.50 × 10−3 2.95 × 10−4 3.63 × 10−5 5.75 4.04 6.04 × 10−4

019(sb) 1.63 × 10−1 7.60 × 10−3 4.20 × 10−4 7.35 × 10−5 7.4 5.58 1.22 × 10−3

Case II, N = 3
cg = 0.563
0168(rec) 1.34 × 10−1 1.10 × 10−3 – – – – –
0169(mb) 1.33 × 10−1 2.00 × 10−3 -
0174(wb) 1.56 × 10−1 3.41 × 10−3 3.60 × 10−4 1.76 × 10−5 3.20 2.24 2.53 × 10−4

0187(ib) 1.58 × 10−1 4.78 × 10−3 4.00 × 10−4 3.76 × 10−5 3.59 2.37 6.36 × 10−4

0195(sb) 1.66 × 10−1 5.25 × 10−3 4.40 × 10−4 4.54 × 10−5 5.2 3.12 7.35 × 10−4

Wide basin
rec 1.51 × 10−1 0.40 × 10−3 – – – – –
mb 1.52 × 10−1 2.80 × 10−3 3.74 × 10−4 – –
wb 1.54 × 10−1 3.62 × 10−3 3.81 × 10−4 1.58 × 10−5 3.8 2.85 2.63 × 10−4

sb 1.74 × 10−1 4.92 × 10−3 4.17 × 10−4 3.05 × 10−5 4.2 2.8 5.07 × 10−4

Case III, N = 5
cg = 0.60
050(rec) 0.1198 1.14 × 10−3 – – – – –
0508(mb) 0.1211 2.27 × 10−3 4.68 × 10−4 – 4.4 2.63 –
052(ib) 0.1246 2.83 × 10−3 4.95 × 10−4 1.19 × 10−5 4.8 3.08 1.38 × 10−4

053(sb) 0.1234 3.98 × 10−3 5.25 × 10−4 2.57 × 10−5 4.6 3.67 2.98 × 10−4

Table 1. Summary of main observational results. The column entries from left to right are as
follows: wave group case type (rec, maximum recurrence; mb, wb, ib, sb are marginal, weak,
intermediate and strong breaking), showing mean linear group speed cg; maximum wave group
steepness parameter S; growth rate just prior to breaking, δbr , maximum growth rate during
recurrence, δmax; 〈E0〉 is the mean wave packet energy just before breaking onset; �〈E〉(m2) is
the total change in mean wave packet energy associated with breaking; 〈XT 〉 (m) is the total
distance from the initiation to the cessation of breaking; 〈Xb〉 (m) is the total distance fetch
along which active breaking occurs; b is the breaking strength coefficient.

an order of magnitude smaller than 1.4 × 10−3, the breaking threshold growth rate
for δ. Consequently, frictional losses were not judged to be critical for the breaking
initiation phase of the investigation. This conclusion was confirmed subsequently in
the auxiliary wide wave basin experiment for case II, N = 3 wave groups, where the
results were very similar to those for the 0.6 m wide wave channel.

4.3. Extraction of breaking losses and loss rates

As described above, the computations in SB could not proceed past the point of
breaking onset, so we were especially interested in the post-breaking measurements.
It was an important goal of this study to determine the associated breaking energy
losses and loss rates, and to correlate these with the proposed dynamical variable δbr ,
as well as with more traditional measures such as the initial maximum wave steepness
S used in previous wave-tank studies (e.g. Rapp & Melville 1990), but for which a
field counterpart arguably does not exist. The role played by viscous losses was a
significant factor in our wave-tank estimates of mean total energy losses of the group
associated with the breaking process.
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Figure 6. The energy loss determination procedure, shown for the strongest case II, N = 5
wave group evolution through breaking. The lower set of data points (∗) shows the background
frictional attenuation of the wave packet mean energy 〈E〉 for the recurrent case II, N = 5
wave groups. The upper set of data points (×) shows, for the steepest initial case II, N = 5
wave groups, the initial frictional attenuation, then the packet energy loss due to a sequence of
active breaking events (indicated by the dashed lines at the top of the figure, from t/T = 14 to
33), then the frictional attenuation of the post-breaking packet energy. The calculation details
are given in the text.

The change in mean potential energy for each of the wave group cases was measured
during the evolution, upstream and downstream of the sequence of multiple breaking
events. The recurrence case acted as the background reference, with the energy
loss attributable to viscosity alone. By making use of the ambient attenuation both
upstream of the first break and also for the recurrence cases, these data allow estimates
to be made of the mean total energy loss of the group owing to breaking after viscous
losses have been taken into account. Here, it is noted that the observed attenuation
rates for the recurrent nonlinear wave group evolution cases were comparable in
magnitude with the viscous loss estimates based on linear wave theory given in § 4.2.
However, it was observed that a log–linear plot of the mean energy decay with fetch
was nonlinear. After some effort, it was found that optimal results were obtained
using a quadratic least-squares fit in linear space for the background viscous loss over
the fetch involved. This same trend was used as the baseline for the breaking cases,
both upstream and downstream of the fetch containing the multiple breaking events.
The ‘jump’ in mean energy level referenced to this baseline was deemed to provide
a consistent estimate of the energy loss due to breaking. In this study, the measured
loss in mean wave energy density ranged up to 17.1 % of the pre-breaking energy
density level. Representative results are shown in figure 6, and the full set of results
documenting the observed breaking properties is recorded in table 1. In addition to
the absolute breaking losses, the observed breaking durations allow estimation of the
wave energy dissipation rate ε associated with active breaking, as calculated according
to the methodology in Appendix A.

Figures 7(a) and 7(b) show for all wave group cases investigated the breaking energy
loss fraction and the breaking strength coefficient b in (1) for the breaking dissipation
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Figure 8. Measured dependence on the growth rate parameter δbr of (a) the relative energy
loss due to breaking and (b) the breaking strength parameter b, defined in (A 2).

rate ε per unit breaker width, as a function of the initial mean wave steepness S.
Owing to viscous losses, S was higher at the wave paddle than in the model runs.
Hence, we allowed for this by calculating S just before breaking onset, and for the
fetch corresponding to the maximum recurrence for that particular case.

An alternative, and arguably more fundamental, presentation of this data is to
compare the observed fractional loss �E/E0 and the breaking strength parameter
rate coefficient bbr with the observed growth rate δbr just before breaking onset. SB
anticipated that this would provide a more intrinsic measure of strength of breaking.
The results for these correlations are shown for the cases investigated in figure 8. It is
clear that the behaviour for case II and III wave groups is very similar and the data
points for each of the cases fall, within experimental scatter, along a common curve.
Moreover, this curve is closely aligned with the breaking threshold growth rate δth.

5. Discussion
Based on the detailed comparison of evolutional properties of the case II wave

groups with the model predictions of SB, we observed for both the computed and
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observed evolutions that approximately the same number of the distinctive local
maxima (both crest and trough) occur in the evolution to the recurrence maximum.
The same behaviour occurred for the evolution to marginal breaking. For increasing
initial group steepness S, the observed evolution continued to mirror the key features
of the computations: decreasing t/T to reach the breaking threshold growth rate
transition, and steadily increasing δ(t) thereafter, until breaking onset.

Also, the dynamic range of 〈µ〉 during the evolution to the recurrence maximum
was from 0.025 to 0.11 in the model and from 0.025 to 0.14 in the observations. The
corresponding evolution time to the recurrence maximum was approximately 42T for
the model compared with 37T in the observations. This is consistent with the slightly
higher observed growth rates δ(t) compared with the corresponding inviscid model
results.

In summary, the observed evolution of case II wave groups closely parallels the
model results, with the observational evolution occurring slightly faster in terms of
t/T . In this regard, we note that the values for the initial wave group steepness S for
model and observations were, respectively, 0.015 and 0.0185. We attribute the steeper
initial wave group required in the wave tank to compensate for the viscous losses in
the wave tank. With the steeper initial wave group required to offset the frictional
effects, it is envisaged that the nonlinear evolution proceeds proportionally faster,
which is consistent with the observed differences.

5.1. Predicting breaking onset

Validating breaking onset in terms of a threshold of δ(t) in the range (1.4 ± 0.1)×10−3

was one of the primary goals of this study. This was observed in each of the cases
of wave groups investigated in this study. This result provides, for the first time as
far as we are aware, a non-local predictor for breaking onset that is based on wave
energetics and can anticipate breaking onset in advance of its actual onset. Typically,
there are up to several periods between δ(t) exceeding the breaking threshold and the
onset of active breaking.

5.2. Strength of breaking

SB proposed that the breaking strength might be strongly correlated with δ(t) just
prior to breaking, denoted by δbr . This key proposal from the SB model results was
validated convincingly in our observations (figure 8).

We found that the downstream mean energy density after breaking had ceased,
was considerably higher than the mean energy density for the respective maximum
recurrent cases. This indicates that the maximum recurrence energy density is not the
primary determinant for the post-breaking energy density.

Finally, it should be noted that in this study, the breaking onset in each case
resulted in multiple (successive) breaks. The maximum observed relative breaking
energy loss ratios �E/E0 were somewhat lower than in Melville (1994), because of
the different initial wave group configurations investigated. Melville (1994, p. 2047)
associates multiple breaking with higher values of S. We envisage that the occurrence
of a single strong break as opposed to multiple weak breaks is also related to the level
attained by δbr . However, we are unable to confirm this from our present observations
in which no single break cases occurred. It should also be noted that when three-
dimensional effects are included in the wave field, directional wave crest convergence
(divergence) enhances (reduces) breaking energy losses and strength (e.g. Nepf, Wu &
Chan 1998). Hence, the present two-dimensional wave breaking results should be
extended in a future study to embrace the effects of wave breaking directionality.



Wave breaking onset and strength 109

5.3. Comparison with available field observations

In this study, the breaking strength coefficient has been defined in relation to the linear
wave speed c, as in (A 2), rather than the actual breaker crest speeds cbr that have
been used to date. This breaker strength coefficient is designated b, in contrast to bbr

defined in (2). The underlying motivation is related to self-consistent transformation,
as discussed in detail in Appendix A § A 2. For the breaking waves in this laboratory
study, we found values of b ranging between 8×10−5 and 1.2×10−3, with a near-linear
dependence on the convergence rate parameter δbr . Since cbr ∼ (0.8–0.9)c, it is easily
seen that b ∼ O[(0.85)5] bbr ∼ 0.5bbr .

From their analysis of radar field data, Phillips et al. (2001) reported bbr ∼ (0.7–
1.3) × 10−3. Allowing for the O(0.5) factor quoted in the previous paragraph, these
levels are comparable with those found in our laboratory study. On the other hand,
Melville & Matusov (2002) quote a representative value of bbr ∼ 8 × 10−3 which
appears to have been inferred from laboratory data estimates of bbr in the range
(3–16) × 10−3 (Melville 1994). After rescaling by 0.5 (see discussion at the end of
previous paragraph), these values are about an order of magnitude higher than were
found for the spilling breakers in the present study.

In any event, for two-dimensional wave groups, we have observed a strong
dependence of b on the rate of energy convergence and geometrical steepening
just prior to breaking. In the field, breaking occurs in more complex wave group
systems, and over a wide range of wave scales (e.g. as measured by their speed c),
with potentially different convergence rates. Determining whether other parameters
should be included to more accurately characterize b remains to be explored in future
studies.

5.4. Comparison of the present modulational growth rates and dissipation rates with
other air–sea interaction growth rates

It is of interest to compare the characteristic mean growth rates and breaking loss
rates observed in this study with characteristic growth rates in the closely related
problem of wind–wave generation. Banner & Song (2002) found that the impact of
wind forcing was secondary compared to hydrodynamic wave group evolution effects,
even for relatively strongly forced cases. Hence, the unforced results are assumed to be
representative of the wind-driven case, and will be used in the following comparison.

From the discussion in § 1.1, we recall that the definition of δ = (1/ωc)(D〈µ〉/Dt),
where µ = Ek2, differs from the usual non-dimensional relative growth rate
(1/ωcE)(DE/Dt). From our measurements, the latter is found to be O(0.05–0.10). This
was inferred using a similar procedure to that described in § 4.2, using typical values of
the variables shown in the figures. Also, the observed dissipation rate associated with
the active periods of the multiple weak spilling breaking events in our experiments
was found to be O(0.005). In comparison, for the wind-driven problem, Donelan
(1999) reported relative growth rates due to wind input ranging up to O(0.01) for
very strong generating conditions (typically the wind speed was seven times larger
than the wave speed), with a dissipation rate due to breaking of the same order of
magnitude. Hence, it is seen that if the mean wave steepness is O(0.1), the group-
mediated hydrodynamic energy fluxes can make a relatively strong contribution on
the short time scale. However, while local wave group modulation is believed to be
operative generally, it is tacitly assumed in spectral wind wave evolution models that
its net influence averages to zero over longer times. On the other hand, wave breaking,
including the group-mediated contribution, is thought to be the major contributor to
the dissipation rate source term that describes the spectral mean loss rate of wave
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energy. This term should also include a background wave energy loss rate associated
with turbulence in the wave boundary-layer region. However, at present there is a
lack of consensus on the form of this term.

Given that spectral wave models do not resolve wave groups explicitly, the task of
including the above contributions is a significant challenge. Alves & Banner (2003)
attempted to encapsulate the breaking contribution parametrically in a spectral
dissipation source term premised on a breaking threshold that uses the spectral
saturation as a surrogate for δ. This choice was motivated by the relationship between
the spectral saturation, integrated over a logarithmic wavenumber bandwidth, and
the corresponding mean wave steepness, a classical measure of wave nonlinearity.
Notwithstanding certain conceptual issues, the use of the spectral saturation as a
viable breaking threshold parameter was investigated in detail in ocean storm wave
measurements by Banner, Gemmrich & Farmer (2002). Others such as Badulin et al.
(2005), have proposed substantially different perspectives on the nature and spectral
representation of wave dissipation. However, resolving this issue is well beyond the
scope of the present contribution.

6. Conclusions
The major conclusions of this investigation for wave breaking onset are as follows.
(i) For both breaking and recurrence, the depth-integrated local energy density

following the maximum of the wave group was observed to evolve in a complex
fashion, with a ‘fast’ oscillation superimposed on a longer-term mean trend. This
behaviour closely parallels the computational results reported in SB. In relation to
breaking onset, the ‘fast’ oscillation, due to the strong crest/trough asymmetry of
the carrier waves, is believed to be primarily a kinematic effect. A non-dimensional
parametric growth rate δ(t) was derived from the mean trend of the diagnostic
parameter µ(t), which reflects the systematic mean wave energy convergence and
carrier wave steepening towards the maximum energy region within the wave group.
This growth rate appears to determine the ultimate breaking or recurrence behaviour.

(ii) Our measurements support the findings of the SB calculations that breaking
or recurrence for two-dimensional chirped or unstable sideband deep water wave
groups are determined by a common growth rate threshold δth that is independent
of the initial wave group structure. The numerical study of SB found that δth lay
in the range (1.4 ± 0.1) × 10−3. For the cases investigated in this study, recurrence
behaviour occurred for a maximum value of δ(t) that lies below this threshold, and
decreased thereafter. This is in contrast with the breaking cases investigated, where
δ(t) continued to increase after it reached this threshold level, after which breaking
occurred within a time interval ranging up to several carrier wave periods. Thus,
using the growth rate δ provides an advance warning time of imminent breaking of
up to several carrier wave periods prior to breaking onset. To our knowledge, this is
unmatched by any previously proposed breaking onset predictor.

The major conclusions of this investigation for wave breaking strength are as
follows.

(iii) The strength of breaking events is strongly correlated with the mean rate
of convergence of energy and carrier wave steepening at the group maximum
immediately preceding breaking onset, as reflected by δbr , the corresponding value of
δ(t) just preceding breaking onset. For the two classes of wave groups investigated,
an excellent collapse of the data was found between δbr and the breaking-induced
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fractional energy loss, with significantly less scatter than for correlations based on
initial wave packet steepness.

(iv) The post-breaking mean energy density was found to remain significantly
above the maximum energy density for maximal recurrent wave groups, which have
comparable local geometric and energetic waveforms. This further reinforces the
hypothesis that breaking is more closely linked to wave energy convergence rates
rather than absolute local wave energy levels.

(v) The breaking strength parameter b in equation (A 2) for the dissipation rate
per unit breaker crest length was deduced from measurements of the post-breaking
energy loss process. The results from the different cases collapsed on a common trend.
The breaking strength parameter b ranged from 8 × 10−5 to 1.2 × 10−3 and was found
to have a strong near-linear dependence on the growth rate parameter δbr .

(vi) This study provides encouraging initial observational support for the nonlinear
wave-group mediated onset of breaking within two-dimensional nonlinear wave
groups. The relevance of this approach to breaking onset and strength for field
wave groups, which includes three-dimensional effects that are known to occur in the
open ocean, remains to be investigated. Other related fundamental issues work to
be resolved in future include understanding what determines the frequently observed
occurrence of multiple successive breaking events in a wave group.

This study has significant implications for future wave observational research. The
present generation of spectral wind wave models does not explicitly incorporate wave
group effects. Energy convergence rates within wave groups may be several times
stronger than the wind input. This was seen in the numerical study of Banner & Song
(2002), but is also evident in recent field observations of maturing wind seas. These
have relatively weak wind forcing at the spectral peak, yet are sufficiently steep for
nonlinear effects to produce breaking of the dominant waves (e.g. see the top left-hand
panel in figure 3 in Gemmrich 2005). This study highlights the need to gather space–
time information that embraces evolving wave groups in order to improve our
present knowledge of wave breaking. Such instrumentation capabilities are becoming
available and should be able to provide new insight into these key processes.
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Appendix A. Estimating the breaking strength parameter b

A.1. Background

Originally developed for quasi-steady breaking, Duncan (1981, 1983) introduced the
mean energy density dissipation rate per unit length of breaking crest εL:

εL = bbrρwc5
br/g. (A 1)

The unknown coefficient bbr quantifies the breaking strength, cbr characterizes the
speed of the breaking wave and ρw is the water density. Phillips (1985) applied
this form subsequently for transient breaking in a spectral context. There is a
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complementary form for the momentum flux transferred by the breaker to the
subsurface flow that involves the fourth power of cbr .

Equation (A 1) is based on the mean rate of working of a breaker of cross-sectional
area Ab and propagation speed cbr against the orbital motion of the underlying wave.
In unsteady breaking, cbr and Ab are time-dependent, and further assumptions are
invoked. Ab is assumed to maintain a constant aspect ratio, i.e. proportionality to λ2,
the square of the wavelength of the breaking wave; a dispersion relation is assumed
between λ and cbr which allows Ab to be expressed in terms of cbr . The coefficient bbr

in (A 1) incorporates these unsteady aspects.
Several authors have provided estimates for cbr in relation to the corresponding

linear wave speed c of the other less steep waves in the group. For their ocean
whitecap measurement analysis, Melville & Matusov (2002) adopted cbr = 0.80c,
while for microscale breakers, Jessup & Phadnis (2005) reported cbr = γ c, where γ

varied over the range 0.22 <γ < 0.85, according to the analysis methodology and
cases investigated. In the present study, measured values of cbr = (0.9 ± 0.05)c were
found (see Appendix B below). In this context, note that for wave packets about to
break, the departure from the linear wave speed c can be associated with the unsteady
nonlinear distortion of the maximal wave in the packet. The local wavelength and
wave period of the breaking wave contract owing to the nonlinearity. The effect is
seen in figure A 2(a) of SB.

A.2. Transformation properties

Note that the choice of cbr in (A 1) has certain associated implications that have not
been considered previously. These arise in relation to using this parameterization of
the impact on breaking-induced dissipation rates and momentum fluxes in spectral
wave model applications.

The issue of the most appropriate form for (A 1) arises in the context of estimating
spectral energy dissipation rates and momentum impulse contributions from breaking
waves in the field (e.g. Melville & Matusov 2002; Gemmrich 2005). Typically, video
imagery of the sea surface allows extraction of the spectral density of mean breaking
crest length Λ as a function of the observed breaker speed cbr . However, the usual
spectral wave description is expressed in terms of linear Fourier mode speed c (or the
equivalent frequency or wavenumber given by the linear wave dispersion relation),
and a difficulty arises with the transformation if (A 1) is based on a cbr dependence.

In essence, the total energy dissipation rate ε and momentum impulse I

contributions from breaking waves involve fifth and fourth moments, respectively, of
the Λ distribution, i.e.

ε =

∫
bg−1c5 Λ(c) dc, I =

∫
bg−1c4 Λ(c) dc.

The breaker image sequence measurements deliver estimates of Λ(cbr ), whereas the
models use Λ(c). These two forms are readily transformed by requiring the total
integrated crest length to be conserved, hence Λ(c) = Λ(cbr )dcbr/dc. Assuming that
cbr ∼ γ c (see Appendix B), this transformation is straightforward. Further, it can be
seen that the energy and momentum fluxes transform consistently if they are based
on c, but this no longer holds if they are based on cbr . On this basis, we recommend
adopting the form

εL = bρwc5/g, (A 2)

and the following data analysis for quantifying b from the wave tank data in this
study is based on this equation.
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A.3. Determination of b from the data

The water density ρw is suppressed in the analysis that follows, which describes how b

was determined from the energy loss measurements in this study. The measured mean
energy density loss between the initiation and final cessation of breaking is �〈E〉,
where E = gη2 is the wave energy density, and 〈. .〉 denotes the average over the wave
group. This energy density loss associated with a given (multiple) breaking event was
deemed to occur over a set of active breaking sub-fetches of total length XAB . The
active breaking width was observed to extend approximately uniformly across the
tank width W.

For the quasi-steady conditions in the tank for the mean properties of the wave
groups, the wave energy propagation equation for 〈E〉 reduces to

D〈E〉Dt = cgd〈E〉dx = Sds, (A 3)

where Sds is the mean rate of loss of the energy density of the wave group through
breaking.

For Sds , we take (A 2), and apply it to the actively breaking front that extends
across the tank width W . In order to express this per unit area, we divide by the
swept breaking area XABW . Thus, the mean rate of energy loss over the fetch XAB is
given by

bc5/g × W/(XABW ). (A 4)

Next, expressing (A 3) as a finite-difference gradient across the active breaking extent
XAB over which fetch the mean energy breaking loss is �〈E〉 gives the mean energy
loss rate per unit area

cg�〈E〉/XAB, (A 5)

Equating (A 4) and (A 5) and solving for b gives

b = gcg�〈E〉/c5 (A 6)

Equation (A 6) was used to determine b for each of the cases measured in this study.
It is noteworthy that this result is independent of whether the breaking occurs as a
single break or a multiple succession of breaks. It is also independent of the actual
breaker speed relative to the linear phase speed.

Table 1 shows that the mean breaking strength coefficient b spans the range from
8 × 10−5 to 1.2 × 10−3. The dependence of b on wave properties is taken up in §5.2
and §5.3 of the text.

Appendix B. Indicative measured values of breaker speed cbr

For interest, a small subset of wave height probe array data sets were collected
downstream of the breaking initiation point from the wave probe array measurements
made in this study. The sequence of time series at the two sets of three closely spaced
fixed wave wire probes allowed estimation of the speed of breaking crests relative to
the corresponding linear phase speed, cbr/c.

The following data were crest maxima with active breaking crests for the steepest
(019) case II, N = 5 packets (see table 1). Time series of the wave heights were analysed
of the upstream and downstream probes, separated by 0.1575 m (approximately 20 %
of the carrier wave length). Based on a sample size of 30 waves, crest passage
transit times were measured at (20 ± 0.7)/125 s for the steep breaking wave at the
centre of the group, and (19 ± 1)/125 s for the lower steepness waves towards the
end of the wave group. Hence, the respective phase speeds were 0.98 ± 0.04 m s−1 and
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1.04 ± 0.55 m s−1. The latter is within the experimental scatter of the linear phase speed
of 1.092 m s−1 whereas the former gives the estimate γ = cbr/c = 0.9 ± 0.04 based on
the paddle frequency, and within the noise of the observed wave speed. The observed
reduction in breaker speed is appreciably less than that reported by Melville &
Matusov (2002) and Jessup & Phadnis (2005).
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